chse	
CBuess	CBSEGuess.com

CLASS X SAMPLE PAPER MATHS

Very Important Questions based on Similar Triangles for Exam

1. Prove that the line draws through the mid point of one side of a triangle parallel to another side bisects the third side.
2. If ABC is an equilateral triangle of side 2 a . Prove that altitude AD is $\mathrm{a} \sqrt{ } 3$.
3. In given figure - 1., ABC and DBC are two triangles on the same base BC . If AD bisects BC at O , Show that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

Fig-1.

Fig - 2 .

Fig-3.

4. In given figure- $2, \mathrm{DEFG}$ is a square and $\angle B A C$ is a right angle. Show that $D E^{2}=B D \times E C$
5. If the triangle ABC . DE 1 ll BC and $\mathrm{DE}: \mathrm{BC}=4: 5$ find the ratio of area of triangle ADE to area of trapezium BCED.
6. In fig - 3., ABCD is a trapezium in which $A B$ ll $E F$ ll $D C$ Prove that $\mathrm{AE}: \mathrm{ED}=\mathrm{BF}: \mathrm{FC}$
7. prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.
8. In given figure-5, AD is a median of $\triangle A B C$ and $A E \perp B C$. Prove that i) $A C^{2}=A D^{2}+B C \cdot D E+\left(\frac{B C}{2}\right)^{2}$ ii) $A B^{2}=A D^{2}-B C \cdot D E+\left(\frac{B C}{2}\right)^{2}$
$A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

Fig -5,

Fig - 6

fig-7

9. The perpendicular AD on the base BC of a triangle ABC interests BC internally at D such that $\mathrm{BD}=3 \mathrm{CD}$ Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.
10. Prove that if the areas of two similar triangles are equal, then the triangles are congruent.
11. Two triangles ABC and PQR are similar. If area $(\triangle A B C)=4$ area $(\triangle P Q R)$ and $\mathrm{BC}=12 \mathrm{~cm}$. Find QR
12. In $\triangle A B C, A D \perp B C$ and $\mathrm{BD}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$
13. In $\triangle A B C, \angle \mathrm{~A}=90^{\circ}, A D \perp B C$. Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$
14. In given figure-6, $P A, Q B$ and $R C$ are each perpendicular to $A C$ and $A P=x, Q B=z, R C=y, A B=a$, and $\mathrm{BC}=\mathrm{b}$. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
15. ABC is a right angle triangle at C , If p be the length of the perpendicular from C to AB and $\mathrm{AB}=\mathrm{c}$,
$\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$, then prove that (a) $\mathrm{pc}=\mathrm{ab}$
(b) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
16. In given figure-7, E is the point on side CB produced of an isosceles $\triangle A B C$ with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \approx \triangle E C F$
17. In given figure-8, the line segment DE is parallel to side BC of triangle ABC and it divides the triangle into two parts of equal areas. Find the ratio of $\frac{B D}{A B}$

Fig -8.

fig 10.

18. In given figure $-9, \mathrm{~A}, \mathrm{~B}$ and C are points on OP, OQ and OR respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.
19. The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm . Find the corresponding median of the other.

20. In given figure-10, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$
21. ABC is a right angled at $\mathrm{A}, A D \perp B C$. If $\mathrm{BC}=13 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$. Find the ratio of the areas of $\triangle A B C$ and $\triangle D A C$.
22. In given figure-11. $\triangle A B C$ and $\triangle D B C$ are on the same base BC. Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar(DBC)}}=\frac{A X}{D X}$

Fig -11.

Fig -12.

Fig 13.

23. Prove that three times the square of any side of an equilateral triangle is equal to four times the square on the altitude.
24. In given figure $-12, \mathrm{AD}$ and CE are medians of a triangle ABC right angled at A . Prove that $4\left(A D^{2}+C E^{2}\right)=5 A C^{2}$
25. In a rhombus ABCD , prove that $A B^{2}+B C^{2}+C D^{2}+D A^{2}=B D^{2}+A C^{2}$
26. In a isosceles $\triangle A B C, \mathrm{AC}=\mathrm{BC}$ and $A B^{2}=2 A C^{2}$, Prove that C is a right angle.
27. In given figure-13, $L M \| C B$ and $L N \| C D$. Prove that $\frac{A M}{A B}=\frac{A N}{A D}$
28. Find the length of the diagonal of a square whose side measures 50 cm .
29. The perimeters of two similar triangles are 24 cm and 18 cm . If one side of the first triangle is 8 cm , what is the corresponding side of the other triangle?

MATHS CONCEPTS, AIDC, ZOO-ROAD GUWAHATI, Ph.No. 98640-91419

Dr. M.K. Mazumdar, M.Sc., Ph.D. PGT, Maria's Public School Guwahati. Ph.No. 98640-91419

